

SPIRADRIVE® gear systems

- > High torque
- > High precision
- > Positive backlash control
- > Ratios 6:1 to 360:1

SPIRADRIVE ® gear systems

High torque density

High-performance alternative to worm and wheel gear sets, with the teeth on the face of the gear and moving the pinion inboard of the gear outside diameter creates a very compact package. Tribological conditions at the contact point allow both gear and pinion to be manufactured from high-strength steel for increased torque capacity.

Irreversible or controlled back-drive

Higher ratios of SPIRADRIVE® gear systems can be designed to be irreversible (statically self locking). Typical applications range from targeting and aiming systems to winches, hoists and robotic arms. Lower ratios allow backdriving and can operate as efficient speed increasers at ratios as high as 30:1.

Accurate control of backlash

Unlike worm gears, backlash in SPIRADRIVE® can be adjusted and controlled by adjusting the mounting position of the gear and pinion and still maintain proper conjugate action. Low backlash can be achieved by this method with a degree of reduction in life and efficiency.

Unique packaging

Frequently, Davall SPIRADRIVE® gearsets are employed to solve packaging problems (often where worm and wheels cannot achieve the torque capacity and duty cycle). The pinion can be mounted on any quarter of the gear either above or below the centreline. Non-perpendicular axis can also be accommodated.

Aerospace

Compact size, low weight, low backlash and high-torque capacity. SPIRADRIVE® can actuate:

- Flight control surfaces
- Missile fins, engine nozzles, actuators
- · Fuselage utilities
- Ground equipment (handling and positioning)
- · Cameras, drives, etc.

Robotics

Combining strength, smooth running and greater efficiency than worm gears at high ratios. SPIRADRIVE® can be applied to:

- Surgical robots
- Automatic welding applications
- Manipulators in automotive assembly lines

Defence

High-shock strength, positive backlash, self-locking control, rugged design and less sensitivity than worm gears to mounting errors, SPIRADRIVE® is used on:

- Satellite antennae
- Azimuth and elevation gun control
- · Hatch and door operation
- Ancillary equipment where hydraulic systems are impractical

SPIRADRIVE® gearboxes

High-power transmission, universal mounting, high-torsional stiffness, sealed for life design, smooth, quiet running.

SPIRADRIVE® gear sets

Wide range of ratios, choice of material, self-locking, small size for given power, high-shock strength.

Wide range of ratios (6:1 to 360:1)

The design of a SPIRADRIVE® gear system is based around the mounting centre distance of the gear set and the diameter of the gear, meaning an interchangeable set of gear sets can be designed with ratios from 6:1 to 360:1. Lowest ratio limited by tooling geometry for manufacture. Highest ratio limited by manufacturability of cutting tools.

Suitable for moulding and sintering

The orientation of the teeth on the face of the gear makes the gear form particularly suitable for moulding and sintering for high-volume, low-cost applications.

High-contact ratio

By spanning the mesh across the face width of the gear, highcontact ratios can be achieved. This results in:

- · Quiet operation
- · Low and controllable backlash
- · High gearmesh stiffness for precise control systems
- High torque capacity

Medical

SPIRADRIVE® gear technology has proved very successful in providing reduction systems in the medical sector, with minimised backlash and positional accuracy. SPIRADRIVE® is used in:

- · Precision critical-imaging systems
- · Drives and actuators

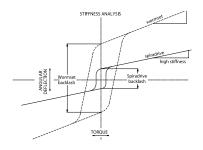
Bespoke applications

SPIRADRIVE® can achieve ultimate smoothness, Davall can offer:

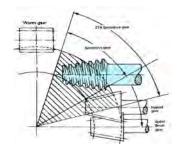
 System design in unique applications demanding critical subjective feel

Industrial/commercial

SPIRADRIVE® can provide a wide choice of ratios, 6:1 to 360:1 (in a single pair of gears), with self-locking capability.


Typical applications include:

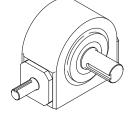
- Machine tool measuring systems
- Robotic system manufacturers
- · Coordinate measuring machines
- Remotely piloted vehicles

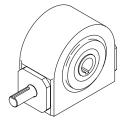

Custom systems

SPIRADRIVE® gearboxes and gear sets are designed, wherever possible, to meet specific customer requirements/applications.

Low backlash and hightorsional stiffness

By virtue of the high-tooth contact ratio and low backlash, SPIRADRIVE® provides a much better control solution for closed-loop actuation systems. Much lower hysteresis and high-torsional stiffness allows much finer control tolerances to be achieved.




Improved efficiency

Due to a combination of both sliding and rolling action, SPIRADRIVE® has a better efficiency than an equivalent ratio worm and wheel.

Standard gearboxes

Output shaft-left (L)

Output shaft-right (R)

Hollow output shaft (H)

Shaft configurations

The shaft permutations, as shown above, are available as standard. Where double-ended shafts are required, the dimensions will mirror those for a single-ended shaft.

Torque capacity

Derate performance characteristics for gearboxes/gear sets by dividing stated capacity by service factor from the table (Page 8).

Lubrication

The type of lubrication required is to a certain extent dictated by the input speed of the

application. This has been overcome by offering two versions of each size of gearbox. The grease-packed version is recommended for use where input speeds up to 500 rpm are involved – this version may also be used for intermittent-duty applications, where the performance figures stated (pages 6 and 7) are not to be exceeded.

For higher speed and for continuous applications, we recommend the use of the oil-filled versions. All steel gearsets require an EP lubricant.

How to order

The possible permutations of shafts, ratio, lubrication and backlash are such that it is essential that the correct catalogue number is quoted in any enquiry or order.

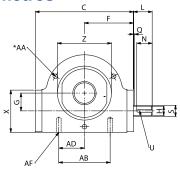
The number has been designed to enable us to clearly identify the exact model required and is made up as follows:

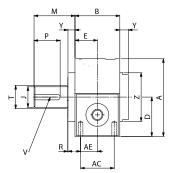
Components of the number: e.g.

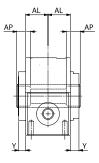
1st group 19SGB - this identifies it as a 19 mm SPIRADRIVE® gearbox

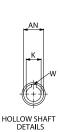
2nd group 19SGB-60 - this group is the required ratio (60:1)

3rd group 19SGB-60-S -


- "S" for single-ended input shaft
- "D" for double-ended input shaft
- 4th group 19SGB-60-S-L -
- "L" for output shaft left
- "R" for output shaft right
- "H" for hollow output shaft
- "D" for double-ended output shaft
- 5th group 19SGB-60-S-L-G "G" for grease


lubrication "O" for oil lubrication


6th group 19SGB-60-S-L-G-BL10 - BL10 for 10 minutes of arc backlash BL3 for 3 minutes or arc backlash*


*Only available for bronze wheel

Dimensions in millimetres

*Note SGB 50 & SGB 70 have four mounting holes equispaced at 45° to the vertical axis through the output shell.

SGB	А	В	C	D	E	F	G	H dia	J dia	K dia	L	M	N	P	Q	R	S dia	T dia
12	56.5	44	70	29	22	35	12	6.995 6.986	9.995 9.986	7.022 7.000	15	25	11	18	1	1	8	12
16	70	46	90	36	23	45	16	8.995 8.986	13.994 13.983	10.000	17.5	33.5	14	21	0.5	1	10	17
19	83	48	105	42	24	52.5	19	9.995 9.986	21.993 21.980	16.027 16.000	20.5	45	15	30	0.5	1	12	25
25	110	70	132	55	35	66	25	14.994 14.983	27.993 27.972	20.021 20.000	34	49	29	36	1	1	17	30
38	160	90	184	80	45	92	38	21.993 21.980	37.991 37.966	30.033 30.000	51	78	40	60	1	1.0 0.3	25	45
50	214	135	256	105	67.5	128	50	29.993 29.980	49.991 49.975	38.025 38.000	62	100	50	82	2	2	32	55
70	297	165	335	150	82.5	167.5	70	37.991 37.975	69.990 69.971	55.030 55.000	81	133	70	105	1	2	40	80

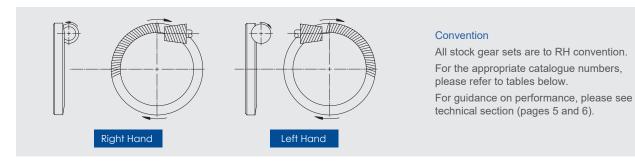
SGB	U	V	w	Х	Y	Z dia	AA	AB	AC	AD	AE	AF	AL	AM dia	AN dia	AP	Ma kgs	F ₁	Fo	Fa
12	2 wide 1.25 deep	3 wide 1.85 deep	2 wide 1.10 deep	33	4.5 3.5	36.00 35.95	M4x8 on 47 P.C.D.	34	34	17	17	M4x8	27	12	10	13	0.6	70	540	850
16	3 wide 1.85 deep	5 wide 3.05 deep	3 wide 1.45 deep	39.5	8.0 7.0	47.00 46.95	M5x10 on 60 P.C.D.	45	35	22.5	17.5	M5x10	31.5	17	14	14	1.1	110	880	930
19	3 wide 1.75 deep	6 wide 3.5 deep	5 wide 2.3 deep	46	8.5 7.5	52.00 51.92	M6x12 on 72 dia.	55	36	27.5	18	M6x12	34	25	21.4	15	1.4	145	1200	1825
25	5 wide 3.0 deep	8 wide 4.0 deep	6 wide 2.8 deep	55.4	6.5 5.5	75.00 74.95	M8x16 on 95 dia.	94	54	47	27	M8x16	42.5	30	-	-	3.5	220	1900	1800
38	6 wide 3.5 deep	10 wide 5.0 deep	8 wide 3.3 deep	80	6.5 5.5	99.99 99.95	M8x16 on 140 dia.	140	70	70	35	M8x20	52.5	45	-	-	10	400	3800	1275
50	8 wide 4.0 deep	14 wide 5.7 deep	10 wide 3.3 deep	103	8.5 7.5	130.00 129.94	M10x20 on 185 dia.†	190	105	95	52.5	M12x24	77.5	55	-	-	30	840	8400	6180
70	10 wide 5.0 deep	20 wide 7.5 deep	16 wide 4.3 deep	140	11.5 10.5	185.00 184.93	M12x24 on 255 dia.†	258	128	129	64	M16x32	95.5	80	-	-	63	1000	11000	9850

† 4 Holes

Maximum dynamic tangential load at 1500rpm (input) at G radius and at centre of keyway:

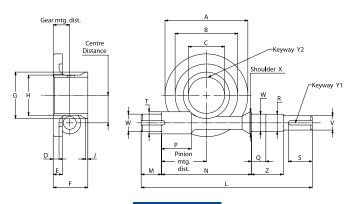
Input shaft F_1 Newtons. Output shaft F_0 Newtons.

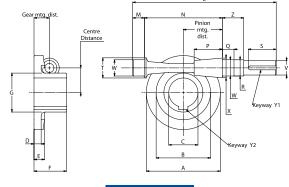
Axial thrust at 60rpm (gear over pinion). Output shaft F_a Newtons.


For guidance on performance see Technical Section (pages 5 & 6) Shaft Configurations – see notes above. Construction:

Housing – cast aluminium alloy. Shafts – high tensile steel. Seals – lip type.

Bearings, input shaft – angular ball/taper roller. Bearings, output shaft – ball bearings. Gears – hardened high tensile steel or steel/bronze Lubrication:
Oil-filled gearbox – Optigear BM 220
Grass filled Cotigear BDO


Grease-filled – Optigear PDO Weight – Ma kg. All dimensions are in mm. General tolerance unless stated ±0.25mm.


SPIRADRIVE® gear sets

All dimensions in millimetres

All standard gearsets and gearboxes are right-hand gearing.

Configur ation A

Configuration B

Centre distance	Ratio	No. threads Pinion	No. teeth Gear	Mountin Pinion	g dist Gear	Catalogue Number	A dia	B dia	C dia	D	E	F	G	н	J
12 CONFIG. A	10.20 16.33 25.50 36.00	5 3 2 1	51 49 51 36	19.00	9.00 9.00 9.00 9.00	012A1020 012A1633 012A2550 012A3600	36.00	26.40	12.013 12.000	3.5	5.63	18.0	16.95	-	-
16 CONFIG. A	10.20 16.33 25.50 36.00 60.00	5 3 2 1 1	51 49 51 36 60	26.00	11.00 11.00 11.00 11.00 11.00	016A1020 016A1633 016A2550 016A3600 016A6000	48.00	35.20	17.018 17.000	4.1	6.94	22.0	23.31	-	-
19 CONFIG. A	8.17 10.25 12.33 25.50 36.00 60.00 90.00 108.00	6 4 3 2 1 1 1	49 41 37 51 36 60 90 108	31.00	11.97 11.37 11.16 11.68 11.10 12.00 11.01 11.38	019A0817 019A1025 019A1233 019A2550 019A3600 019A6000 019A9000 019A10800	57.15	43.20	25.001 STEEL 24.980 GEAR 24.988 BRONZE 24.967 GEAR	4.0	6.0	23.5	32.0	28.0	1.5
25 CONFIG. A Tapered	10.25 16.33 25.50 36.00 58.00 100.00	4 3 2 1 1	41 49 51 36 60 100	41.00	19.42 19.60 19.62 18.60 19.82 20.75	025A1025 025A1633 025A2550 025A3600 025A5800 025A10000	76.20	55.88	30.021 30.000	9.5	13.48	39.0	39.0	-	-
38 CONFIG. B	10.20 17.33 25.50 31.00 36.50 58.00 90.00 120.00	5 3 2 1 2 1 1 1	51 52 51 31 73 58 90 120	60.00	24.04 23.92 23.70 21.62 24.78 24.34 25.42 25.35	038A1020 038A1733 038A2550 038A3100 038A3650 038A5800 038A9000 038A12000	114.30	83.82	45.025 45.000	11.0	16.11	50.0	60.0	-	-
50 CONFIG. B	10.20 17.33 25.50 38.00 58.00 90.00 120.00	5 3 2 1 1 1	51 52 51 38 58 90 120	81.00	34.28 33.50 33.56 33.78 34.09 36.06 36.79	050A1020 050A1733 050A2550 050A3800 050A5800 050A9000 050A12000	152.4	111.8	55.030 55.000	16.0	23.00	68.0	78.0	-	-
70 CONFIG. B	10.20 17.33 25.50 36.50 58.00 87.00 120.00	5 3 2 2 1 1	51 52 51 73 58 87 120	109.00	43.88 43.87 43.27 45.62 43.70 45.98 46.57	070A1020 070A1733 070A2550 070A3650 070A5800 070A8700 070A12000	209.55	153.67	80.03 80.00	20.00	29.58	87.0	112.0	-	_

Centre distance	Gear Form	L	M	N	P	a	R	s	T dia	V dia	W dia	X dia	Υ1	Y2	z
12	Parallel	77	8	38.00	14.10	8.0	7.95 7.90	11.0	10.17	6.995 6.986	8.004 7.998	10.17	2.00 wide 1.25 deep	3.00 wide 1.40 deep	17.0
16	Parallel	98.5	10	52.00	19.46	10.0	9.95 9.91	14.0	15.0	8.995 8.986	10.004 9.998	15.0	3.00 wide 1.8 deep	4.00 wide 1.80 deep	19.8
19	Parallel	118	14	62.00	22.33	15.75	11.92 11.87	15.0	15.24	9.995 9.986	12.005 11.997	15.24	3.00 wide 1.8 deep	4.00 wide 1.80 deep	22.0
25	Tapered	154	13	82.00	29.92	12.0	16.95 16.90	29.0	23.0	14.994 14.983	17.005 16.997	23.0	5.00 wide 3.0 deep	6.00 wide 2.80 deep	25.0
38	Tapered	221	18	120.00	43.38	18.0	24.92 24.87	40.0	31.0	21.990 21.980	25.015 25.002	30.363 30.313	6.00 wide 3.60 deep	14.00 wide 3.80 deep	33.0
50	Tapered	297	26	162.00	59.00	26.0	32.00 31.84	50.0	42.0	29.993 29.980	35.018 35.002	41.5	8.00 wide 4.00 deep	16.00 wide 4.30 deep	49.0
70	Tapered	392	34.5	218.00	78.5	45.0	40.00 39.84	70.0	55.0	37.991 37.975	40.018 40.002	55.07	10.00 wide 5.00 deep	22.00 wide 5.40 deep	59.5

SPIRADRIVE® gearbox and gear-set performance

SPIRADRVE® 12 mm

	Carr	box & gearset			-	50	-	Inpu 00	t speed	rpm 00		500	2/	000		Separat	ing factor
Ratio		teristics (steel)		lb.f.ins.				lb.f.ins.	N.m.	lb.f.ins.	N.m.	lb.f.ins.	N.m.	lb.f.ins.	Force	LoSide	HiSide
10.2	Output Torque Efficiency	Continuous Intermittent (Approx.)	8.12 75	71.84	6.36 6.65	56.29 58.82 80	3.64 6.07	32.22 53.7 82	2.07 5.37	18.29 47.5 3	1.42 4.89	12.56 43.32 85	0.79 4.06 8	7.01 39.95	Fx Fy Fz	1.702 0.515 0.766	1.505 0.884 1.19
16.33	Output Torque Efficiency	Continuous Intermittent (Approx.) %	11.41	101.02	8.81 9.21	78.01 81.51 70	5.02 8.37	44.46 74.1 72	2.83 7.36	25.08 65.14	1.94 6.69	17.16 59.17 77	1.07 5.51 8	9.51 48.79	Fx Fy Fz	1.891 0.37 0.508	1.689 0.921 1.09
25.5	Output Torque Efficiency	Continuous Intermittent (Approx.) %	11.21	99.2	8.58 8.97	75.95 79.36 58	4.88 8.13	43.19 71.98 60	2.74 7.12	24.26 63.02	1.87 6.46	16.57 57.14 67	1.03 5.3 7	9.15 46.92	Fx Fy Fz	2.01 0.377 0.431	1.79 0.992 1.095
36	Output Torque Efficiency	Continuous Intermittent (Approx.) %	11.17	98.9	8.44 8.82	74.71 78.07 47	4.78 7.97	42.32 70.54 49	2.67 6.93	23.6 61.3	1.82 6.27	16.08 55.46 56	1 5.11 6	8.82 45.23	Fx Fy Fz	2.086 0.382 0.402	1.858 1.039 1.11

SPIRADRIVE® 16mm

	Goarbo	x & gearset			21	50	1 50	nput spee	ed rpm 100		15	00	300		S	eparatin	g factor
Ratio		ristics (steel)	N.m.	lb.f.ins.		lb.f.ins.		lb.f.ins.	N.m.	lb.f.ins.		lb.f.ins.	N.m.	lb.f.ins.	Force	LoSide	HiSide
10.2	Output Torque Efficiency	Continuous Intermittent (Approx.) %	18.55 74	164.2	14 14.63 8	123.9 129.5 1	7.914 13.19 82	70.02 116.7	4.4 11.43 85	38.96 101.2	3 10.33 8	26.52 91.45 6	1.64 8.4 89	14.45 74.33	Fx Fy Fz	1.283 0.388 0.571	1.137 0.741 0.946
16.33	Output Torque Efficiency	Continuous Intermittent (Approx.) %	26.56 64	235.1	19.93 20.83 7	176.5 184.4 2	11.26 18.76 73	99.6 166 3	6.24 16.22 77	55.28 143.6	4.25 14.65 7	37.61 129.7 9	2.32 11.89 82	20.48 105.2	Fx Fy Fz	1.399 0.276 0.393	1.261 0.688 0.817
25.5	Output Torque Efficiency	Continuous Intermittent (Approx.) %	26.85 49	237.6	19.71 20.6 5	174.5 182.3 8	11.24 18.73 60	97.86 163.1	6.07 15.77 65	53.75 139.6	4.11 14.18 6	36.4 125.5 7	2.22 11.39 73	19.66 100.8	Fx Fy Fz	1.512 0.283 0.322	1.359 0.755 0.824
36	Output Torque Efficiency	Continuous Intermittent (Approx.) %	25.84 41	288.7	19.03 19.89 5	168.4 176 0	10.69 17.82 52	94.62 157.7	5.88 15.28 57	52.05 135.2	3.98 13.74 6	35.26 121.6 0	2.16 11.06 65	19.08 97.87	Fx Fy Fz	1.548 0.285 0.304	1.388 0.776 0.83
60	Output Torque Efficiency	Continuous Intermittent (Approx.) %	26.4 26	233.7	19.09 19.95 3	169 176.6 5	10.66 17.77 36	94.4 157.33	5.83 15.13 42	51.55 133.9	3.93 13.55 4	34.77 119.9 4	2.11 10.8 51	18.65 95.62	Fx Fy Fz	1.606 0.289 0.292	1.441 0.812 0.846
90	Output Torque Efficiency	Continuous Intermittent (Approx.) %	24.32 24.32 23	215.2 215.2	17.52 18.31 3	155.0 162.0 1	9.77 16.28 34	86.5 144.1	5.27 13.70 38	46.7 121.3	3.48 12.01 4	30.8 106.3	1.85 9.48 45	16.4 83.9	Fx Fy Fz	1.348 0.244 0.287	1.327 0.797 0.300

SPIRADRIVE® 19mm

	Gearbo	x & gearset			25		50	nput spee	d rpm 100	10	150	nn	300		S	eparatin	g factor
Ratio		ristics (steel)	N.m.	b.f.ins.	N.m. I			lb.f.ins.	N.m.	lb.f.ins.		b.f.ins.	N.m.	lb.f.ins.	Force	LoSide	HiSide
8.17	Output Torque Efficiency	Continuous Intermittent (Approx.) %	27.9 27.9 79	247 247	16.8 22.3 84	149 197	11.6 19.3 86	103 171	6.4 16.6 88	56.6 147	4.5 15 89	39.8 133	2.1 12.1 92	18.7 107	Fx Fy Fz	0.934 0.452 0.472	0.936 0.763 0.424
10.25	Output Torque Efficiency	Continuous Intermittent (Approx.) %	34.2 34.2 75	303 303	20.7 27.3 81	183 242	14.3 23.7 83	127 210	7.8 20.3 86	69.3 180	5.5 18.3 87	48.4 162	2.6 14.8 90	22.9 131	Fx Fy Fz	1.045 0.372 0.386	1.054 0.765 0.258
12.33	Output Torque Efficiency	Continuous Intermittent (Approx.) %	34.2 34.2 70	303 303	20.7 27.2 77	183 241	14.1 23.6 79	125 209	7.8 20.2 81	69 179	5.4 18.2 84	48 161	2.6 14.6 85	22.6 129	Fx Fy Fz	1.078 0.354 0.341	1.086 0.747 0.218
25.5	Output Torque Efficiency	Continuous Intermittent (Approx.) %	45.3 45.3 48	401 401	26.2 35 57	232 310	18.1 29.9 60	160 265)	9.8 25.4 66	87 225	6.8 22.7 68	60.1 201	3.1 18 74	27.8 159	Fx Fy Fz	1.179 0.222 0.205	1.179 0.719 0.122
36	Output Torque Efficiency	Continuous Intermittent (Approx.) %	40.7 40.7 40	360 360	25.5 31.5 48	226 279	16.3 27 52	144 239	8.8 22.9 58	78.1 203	6.1 20.5 60	54.1 181	2.8 16.3 67	25.2 144	Fx Fy Fz	1.202 0.220 0.172	1.197 0.783 0.131
60	Output Torque Efficiency	Continuous Intermittent (Approx.) %	44.6 44.6 26	395 395	27.6 34 34	244 301	17.5 28.9 37	155 256	9.4 24.4 43	83.2 216	6.5 21.7 45	57.4 192	3 17.1 53	26.4 151	Fx Fy Fz	1.152 0.183 0.153	1.124 0.556 0.360
90	Output Torque Efficiency	Continuous Intermittent (Approx.) %	45.1 45.1 27	399 399	29 35 29	257 310	18 30 31	159 266	9.7 25.4 36	85.9 22.5	6.8 22.6 39	60.2 200	3.1 17.8 45	27.4 158	Fx Fy Fz	1.235 0.110 0.122	1.230 0.647 0.108
108	Output Torque Efficiency	Continuous Intermittent (Approx.) %	46 46 18	407 407	27.3 35.7 23	242 316	18.5 30.6 26	164 271	10 26 31	88.5 230	7 23.3 33	61.6 206	3.2 18.4 40	28.5 163	Fx Fy Fz	1.236 0.219 0.113	1.229 0.644 0.108

SPIRADRIVE® 25 mm

	Gearbox	x & gearset	1		21	50	50	input spee	d rpm 100	00	15	:00	300	00	S	eparatin	g factor
Ratio		ristics (steel)	N.m.	lb.f.ins.		lb.f.ins.		lb.f.ins.	N.m.	lb.f.ins.	N.m.	lb.f.ins.	N.m.	lb.f.ins.	Force	LoSide	HiSide
10.25	Output Torque Efficiency	Continuous Intermittent (Approx.) %	108.56 108.56 76	606.8 606.8	49.2 51.41	435.4 455 3	27.27 45.45 84	241.4 402.3	14.85 38.56 87	131.4 341.3	9.97 34.38 8	88.25 304.3 88	5.32 27.26 91	47.05 241.3	Fx Fy Fz	0.81 0.248 0.392	0.737 0.478 0.622
16.33	Output Torque Efficiency	Continuous Intermittent (Approx.) %	92.9 92.9 63	822.2 822.2	65.25 68.18 7	577.6 603.4 2	35.9 59.84 7!	317.8 529.6	19.84 51.52 78	175.6 456 3	12.97 44.72 8	114.8 395.8 30	6.86 35.16 85	60.68 311.2	Fx Fy Fz	0.894 0.176 0.252	0.81 0.491 0.564
25.5	Output Torque Efficiency	Continuous Intermittent (Approx.) %	97.81 97.81 50	865.7 865.7	67.83 70.88	600.3 627.3	37.13 61.89 64	328.7 547.8	19.99 51.92 68	176.9 459.5 3	13.33 45.95 7	117.9 406.7 '1	7.01 35.95 78	62.05 318.2	Fx Fy Fz	0.956 0.18 0.21	0.869 0.483 0.527
36	Output Torque Efficiency	Continuous Intermittent (Approx.) %	93.71 93.71 42	829.4 829.4	65.22 68.15	577.3 603.2 52	35.8 59.66 56	316.8 528	19.29 50.1 61	170.7 443.4	12.87 44.39 6	113.9 392.9 3	6.79 34.8 71	60.06 308	Fx Fy Fz	0.982 0.181 0.197	0.889 0.497 0.53
58	Output Torque Efficiency	Continuous Intermittent (Approx.) %	102.3 102.3 28	905.1 905.1	69.93 73.07	618.9 646.7 7	38.06 63.44 4	336.9 561.5 I	20.41 53.01 46	180.6 469.2	13.56 46.76 4	120 413.9 19	7.1 36.4 58	62.82 322.13	Fx Fy Fz	1.02 0.184 0.187	0.929 0.472 0.492
100	Output Torque Efficiency	Continuous Intermittent (Approx.) %	77.73 77.73 18	688 688	63.74 66.6 2	564.2 589.5	35.91 59.85 29	317.8 529.7	19.32 50.17	170.9 444 2	12.73 43.89 3	112.7 388.5 36	6.35 32.58 44	56.24 288.4	Fx Fy Fz	0.985 0.182 0.192	0.927 0.482 0.491

SPIRADRIVE® gearbox and gear-set performance

SPIRADRVE® 38 mm

	Gearbox	& gearset	1		25	60	50	nput spec		000	1!	500	3	000	\$	Separatin	g factors
Ratio		istics (steel)	N.m.	lb.f.ins.		lb.f.ins.	N.m.	lb.f.ins.	N.m.	lb.f.ins.	N.m.	lb.f.ins.	N.m.	lb.f.ins.	Force	LoSide	HiSide
10.2	Output Torque Efficiency	Continuous Intermittent (Approx.) %	240 240 78	2128 2128	149 180 86	1319 1591	91.2 151 88	807 1334 3	48.5 126.1	430 1116 89	33.3 111	295 985 91	15.3 86.2	135 769 93	Fx Fy Fz	0.544 0.221 0.180	0.500 0.390 0.185
17.33	Output Torque Efficiency	Continuous Intermittent (Approx.) %	331 331 65	2926 2926	194 242 75	1717 2143	122 201 78	1077 1780 3	64.3 167	569 1478 81	43.8 147	388 1299 84	19.9 114	176 1006 88	Fx Fy Fz	0.598 0.137 0.116	0.560 0.347 0.113
25.50	Output Torque Efficiency	Continuous Intermittent (Approx.) %	330 330 54	2924 2924	190 239 66	1682 2115	119.3 197.3 70	1056 1746)	62.8 163	556 1445 73	42.8 143	379 1266 76	19.3 110	171 976 83	Fx Fy Fz	0.610 0.130 0.099	0.571 0.344 0.105
31.0	Output Torque Efficiency	Continuous Intermittent (Approx.) %	288 288 51	2551 2551	169 211 63	1496 1868 3	106 175 67	940 1553	56.2 146	497 1291 71	38.3 128	339 1135 74	17.4 99.3	154 879 80	Fx Fy Fz	0.620 0.132 0.088	0.577 0.379 0.101
36.5	Output Torque Efficiency	Continuous Intermittent (Approx.) %	336 336 42	2972 2972	192 239 54	1699 2112	118 195	1045 1728	61.8 161	547 1421 64	41.9 140	371 1240 68	18.8 107.3	166 950 75	Fx Fy Fz	0.628 0.124 0.073	0.588 0.343 0.093
58.0	Output Torque Efficiency	Continuous Intermittent (Approx.) %	326 326 31	2886 2886	185 231 43	1637 2046 3	114 189 48	1012 1673 3	59.8 155	529 1375 52	40.4 135	358 1199 57	18.2 104	161 918 66	Fx Fy Fz	0.644 0.123 0.054	0.549 0.260 0.194
90.0	Output Torque Efficiency	Continuous Intermittent (Approx.) %	305 305 22	2699 2699	179 214 31	1584 1891	105 174 30	930 1537	54.7 142	484 1257 40	36.9 123.5	327 1093 45	16.5 94.2	146 834 54	Fx Fy Fz	0.654 0.121 0.042	0.615 0.319 0.066
120.0	Output Torque Efficiency	Continuous Intermittent (Approx.) %	380 380 17	3363 3363	204 270 25	1806 2388	132 219 29	1171 1936)	68.8 179	609 1581 33	46.3 155	410 1373 37	20.7 118	183 1046 46	Fx Fy Fz	0.671 0.121 0.020	0.604 0.251 0.132

SPIRADRIVE® 50 mm

01 11 0	ADITIVE	30 111111															
	Goarbox	& gearset			-	50	50	Input spee		00		500	,	000	S	Separatin	g factors
Ratio		istics (steel)	N.m.	lb.f.ins.		lb.f.ins.	N.m.	lb.f.ins.	N.m.	lb.f.ins.	N.m.	lb.f.ins.	N.m.	lb.f.ins.	Force	LoSide	HiSide
10.2	Output Torque Efficiency	Continuous Intermittent (Approx.) %	559 559 76	5047 5047	315 380 84	2791 3363 1	194 324 8	1721 2868 7	102 265 8	904 2349 39	69 231	614 2047 91	31 177	274 1567 93	Fx Fy Fz	0.374 0.117 0.202	0.344 0.222 0.299
17.33	Output Torque Efficiency	Continuous Intermittent (Approx.) %	792 792 63	7009 7009	421 526 74	3724 4655 1	247 412 7	2366 3943 8	139 362 8	1235 3208 32	95 315	835 2784 84	42 239	371 2119 88	Fx Fy Fz	0.426 0.086 0.135	0.399 0.218 0.257
25.50	Output Torque Efficiency	Continuous Intermittent (Approx.) %	788 788 51	6978 6978	413 516 64	3650 4563 1	261 435 6	2310 3850 9	121 352	1201 3119 73	92 305	810 2699 77	40 231	358 2047 83	Fx Fy Fz	0.453 0.088 0.114	0.424 0.235 0.258
38.0	Output Torque Efficiency	Continuous Intermittent (Approx.) %	755 755 41	6687 6687	396 495 54	3506 4382 1	251 418 5	2219 3698 9	131 339	1154 2998 55	88 293	779 2596 69	39 222	345 1970 76	Fx Fy Fz	0.468 0.088 0.103	0.438 0.246 0.261
58.0	Output Torque Efficiency	Continuous Intermittent (Approx.) %	829 829 29	7340 7340	424 530 42	3753 4691 2	267 445 4	2362 3937 7	138 358	1219 3167 53	93 309	819 2731 58	41 233	361 2062 65	Fx Fy Fz	0.485 0.090 0.096	0.456 0.232 0.242
90.0	Output Torque Efficiency	Continuous Intermittent (Approx.) %	787 787 19	6933 6933	392 490 30	3473 4341	246 410 3	2177 3629 4	126 328	1117 2902 10	85 282	748 2494 45	37 212	329 1878 51	Fx Fy Fz	0.496 0.090 0.093	0.464 0.263 0.270
120.0	Output Torque Efficiency	Continuous Intermittent (Approx.) %	1154 1154 15	10212 10212	545 717 24	4824 6347 1	359 599 2	3179 5298 7	184 478	1628 4229 33	123 410	1089 3630 38	54 308	478 2730 43	Fx Fy Fz	0.500 0.091 0.093	0.468 0.266 0.272

SPIRADRIVE® 70 mm

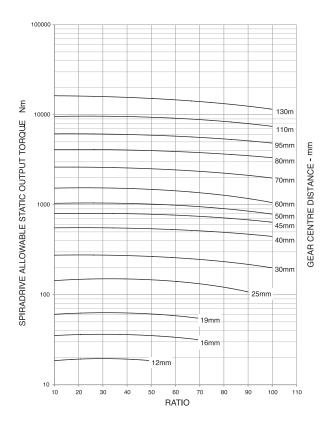
	Gearbox 6	& gearset	1		21	50	lı 500	put spee	d rpm	00	150	20	300	00	S	eparatin	g factors
Ratio	Characteri	stics (steel)	N.m.	lb.f.ins.		lb.f.ins.		lb.f.ins.	N.m.	lb.f.ins.		lb.f.ins.	N.m.	lb.f.ins.	Force	LoSide	HiSide
10.2	Output Torque Efficiency	Continuous Intermittent (Approx.) %	1458 1458 77	12909 12909	781 941 86	6916 8333	475 792 88	4206 7010	246 638 91	2174 5647	165 551 93	1463 4877	73 416 94	645 3686	Fx Fy Fz	0.267 0.084 0.152	0.247 0.143 0.207
17.33	Output Torque Efficiency	Continuous Intermittent (Approx.) %	1633 1633 64	14454 14454	816 1020 77	7219 9024	511 851 80	4522 7536	262 680 84	2317 6017	175 584 87	1551 5169	77 438 90	679 3881	Fx Fy Fz	0.311 0.091 0.117	0.289 0.158 0.186
25.50	Output Torque Efficiency	Continuous Intermittent (Approx.) %	2015 2015 52	17837 17837	993 1241 68	8714 10983	620 1033 71	5486 9143	316 822 77	2800 7273	211 704 81	1870 6235	92 528 84	817 4670	Fx Fy Fz	0.328 0.063 0.083	0.307 0.170 0.188
36.50	Output Torque Efficiency	Continuous Intermittent (Approx.) %	2049 2049 40	18138 18138	986 1232 56	8725 10906	610 1017 61	5402 9003	309 803 68	2737 7110	206 686 73	1822 6075	90 512 77	792 4528	Fx Fy Fz	0.343 0.064 0.074	0.322 0.180 0.191
58.0	Output Torque Efficiency	Continuous Intermittent (Approx.) %	2124 2124 30	18802 18802	1021 1276 45	9038 11298	632 1054 50	5600 9333	321 833 57	2838 7372	214 712 63	1889 6298	93 531 68	822 4696	Fx Fy Fz	0.353 0.065 0.070	0.332 0.169 0.176
87.0	Output Torque Efficiency	Continuous Intermittent (Approx.) %	2149 2149 21	19018 19018	1059 1265 34	9374 11193	625 1041 38	5530 9217	315 818 46	2788 7242	209 697 52	1852 6172	91 518 57	803 4586	Fx Fy Fz	0.360 0.066 0.068	0.339 0.173 0.178
120.0	Output Torque Efficiency	Continuous Intermittent (Approx.) %	2541 2541 16	22487 22487	1120 1483 27	9914 13123	731 1218 31	6468 10780	368 955 38	3254 8451	244 813 44	2158 7195	106 603 49	934 5337	Fx Fy Fz	0.364 0.066 0.067	0.344 0.158 0.162

- Heat dissipation limits gearbox continuous torque. So for intermittent use take the high value. For open gearsets, given good heat dissipation, use the higher value.
 Breaking strength exceeds 1.5 of 1rpm level given adequate bearing support as with stock

- Bronze gearbox/gearset torque capacity is 60% of stated intermittent levels.
 Refer to service factors on following page.
 Static self locking applies marginally at 25.5 ratio and positively above this value. Vibration can sometimes result in non self locking of almost any ratio.
- 6 See chart for use of separating factors to find bearing reactions.

Polar moments of inertia of masses

Input shaft I₁ kgm² Output shaft I₀ kgm² Total inertia of gearbox at input


$$= I_1 + \frac{I_0}{\text{ratio}^2} \text{kgm}^2$$

SGB crs	I_1	I_0
12	3.11x10 ⁻⁷	8.00x10 ⁻⁶
16	1.03x10⁵	6.75x10⁵
19	3.49x10⁴	7.99x10⁵
25	1.19x10⁵	3.95x10⁴
38	9.28x10 ⁻⁵	3.34x10 ⁻²
50	1.74x10 ⁻³	1.05x10 ⁻²
70	2.43x10 ⁻³	4.90x10 ⁻²

Gear torques

ALLOWABLE STATIC STEEL GEAR TORQUE

(FOR CENTRE DISTANCE 12 -130 mm)

Allowable static gear torque (steel) for gear centre distances 12-130mm) NOTE:

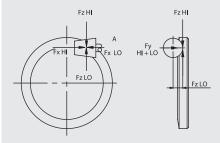
We reserve the right to make changes and corrections without notice. Every effort has been made to provide accurate technical and product information. The company disclaims responsibility for any error or omission regarding technical and product information published.

Customers are advised to confirm 'fitness for purpose' for their specific application by suitable testing.

Bearing thrusts

Axial Thrust (Pinion) = $TQ \times Fx \times 39.37$ Newtons

= TQ (lbf ins) x Fx lbf


Radial Thrust (Pinion) = TQ (Nm x Fz x 39.37 Newtons

= TQ (Ibf ins) x Fz Ibf

* Axial Thrust (Gear) = TQ (Nm x Fy x 39.37 Newtons

= TQ (lbf ins) x Fy lbf

*Radial Thrust (Gear) = Axial Thrust (Pinion)

(TQ = Torque)

*NB Gear thrusts are offset forces. Refer to table above for appropriate separating force factors and obtain thrust components using above formula.

(Torque required = output torque.)

NOTE: Clockwise pinion drive (viewed from A) results in Hi side drive and anticlockwise pinion drive in Lo side drive.

Service factors

Prime Mover	Driv	en machin Uniform	e load classi Moderate shock	fications Heavy shock
Electric Motor (normal service)	Occasional - 1/2 hr/day total Intermittent - 2 hr/day total 10 hours per day 24 hours per day	0.80 0.90 1.00 1.25	0.90 1.00 1.25 1.50	1.00 1.25 1.50 1.75
Electric Motor (more than 10 starts per hour)	Occasional - 1/2 hr/day total Intermittent - 2 hr/day total 10 hours per day 24 hours per day	0.90 1.00 1.25 1.50	1.00 1.25 1.50 1.75	1.25 1.50 1.75 2.00
Multi-cylinder internal combustion engine	Occasional - 1/2 hr/day total Intermittent - 2 hr/day total 10 hours per day 24 hours per day	0.90 1.00 1.25 1.50	1.00 1.25 1.50 1.75	1.25 1.50 1.75 2.00
Single cylinder internal combustion engine	Occasional - 1/2 hr/day total Intermittent - 2 hr/day total 10 hours per day 24 hours per day	1.00 1.25 1.50 1.75	1.25 1.50 1.75 2.00	1.50 1.75 2.00 2.25

Depending upon applications, modify the charted figures by dividing them by the appropriate service factor above.

Quality

Davall operates a fully approved quality system, which meets the requirements of ISO 9001, AS9100, NADCAP and the approval of many notable prime contractors in the aerospace and defence industry.

Travellers Lane, Welham Green, Hatfield, Hertfordshire AL9 7JB Telephone: 01707-283100 Fax: 01707-283111

info@davall.co.uk | mtimotion.com

